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The Dirichlet Problem for a Class of Elliptic 
Difference Equations* 

By G. T. McAllister 

Abstract. Under suitable assumptions on the order of nonlinearity we prove existence 
and uniqueness theorems for difference Dirichlet problems of divergence type. We also show 
that the discrete solutions converge to a solution of the continuous problem. We do not 
assume that our equation comes from a variational problem. Some of our results are 
constructive or allow for the application of constructive methods. 

Introduction. Let Q be a plane bounded region such that the boundary of Q, 
d, is of class C1. 

If P is a point in the plane, then we denote it by (xl, x2). Place a square grid on 
the plane of grid width h. All points of the form (mh, nh), with m and n integers, are 
called mesh points. Let PO = (xol, x02) be a mesh point. Then a neighborhood of PO 
is the set of points T(Po) = { (xo0, xO2), (xol + h, X02), (XOl + h, X02 + h), (XO1, X02 + h), 
(xol - h, X02 + h), (xol -h, X02), (XO1- h, X02- h), (xo, X02- h), (xol + h, x02 - h)}. 
We define Qh as that set of mesh points P such that OZ(P) C 0, and we define the 
boundary of Qh as those mesh points P in r such that at least one element of DZ(P) 
is in the exterior of = Q2 + a Q. 

Let V(P) be any function which is everywhere finite for P E Qh + O% = Qhh; 

such a function will be called a mesh function. Let P =(xI, x2) be a mesh point. 
Then, for any mesh function we define forward difference quotients by 

V.1(P) = I V(xI + h, X2) - V(P)}/h, V.2(P) = { V(X1, X2 + h) - V(P)}/h 

and backward difference quotients by 

Vt1(P) = { V(P) - V(x1 - h, x2)}/h, V12(P) = { V(P) - V(xI, x2 -h)}/h . 

The vector (V.1(P), Ve2(P)) is denoted by VhV(P) and the vector (V 1(P), V,2(P)) is 
denoted by VhV(P). 

We denote by Qh (and Qh') the set of points P C_Q such that, for any mesh 
function V(P) defined on Qh, the vector VhV(P) (and VhV(P)) is defined using only 
mesh points in h. If Dh is any set of mesh points in the plane, then we define mh(Dh) 
to be h2 times the number of points in Dh. A set of mesh points will be called con- 
nected iff one can go from any mesh point in the set to any other mesh point in the 
set along line segments of length h connecting only elements of the set. We assume 
all mesh sets are connected. 

A function u(P) E C (Q) iff the support of u(P) is a compact subset of Q and all 
pth order partial derivatives of u(P) are continuous over Q. The set ?m(Q) denotes all 
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functions whose absolute value is Lebesgue integrable to the mth power. The space 
C,p ((Q) is the completion of C:(Q) with respect to the metric of ?m(Q) applied to 

all partial derivatives up to order p; for a more detailed discussion see Morrey 
[12, pp. 62-90]. 

In this paper, we shall study selfadjoint uniformly elliptic differential problems 
of the form 

(*) (a,(P, u(P), Vu(P)))., = f(P, u(P), Vu(P)), P E Q, 

u(P) = q(P), P C 0Q, 

where the repeated indices are summed and Vu(P) = (ur1(P), ur,(P)) with ur,(P) 
Ou(P)/Ox,. We consider the difference approximation associated with this equation 
for given mesh size h to be given as 

(**) (aj(P, U, Vh U))., = f(P, U, Vh U), P E C h 

U(P) = Q(P), P E C3h. 

The mesh function Q(P) is related to q(P) in that we assume q(P) has a nice extension 
to Q; for our purposes it is sufficient to assume that it may be extended to a as an 
element of C2(D), call it 4(P), and we define Q(P) = 4(P) for P C c3ah. 

The results of this paper will also hold for the difference problem 

(ai(P, U, Vh U))ei + (a1(P, U, Vh U))., 

- f(P, U, Vh u) + f(P, U, VAU), P C Qh% 

U(P) = Q(P), P OE a oh. 

Let aO(&I) be the set of all mesh functions defined on Q, and such that they 
vanish on aflh. Any solution U(P) of (**) will be such that, for every I E (9j, 

(h {aa(P, U, VhU)vZj + f(P, U, VhU)fl = O. 

To save space, we shall often drop the index set of the summation. If we used the 
approximation in (**)', we would add to (***) a summation over fll. It is this last 
equation we shall study when we prove results of existence, uniqueness and 
convergence. 

It is clear that to prove conditions for existence, uniqueness and convergence, we 
must make some assumptions which describe in a gross sense the types of nonlinearity 
we are considering in (*). We list these classical assumptions as follows (for a more 
detailed analysis of the genesis of these conditions see [7] and [12]): 

Condition (A). There exists a nonnegative constant Cl such that, for mesh 
functions V(P) and W(P), 

2 

,a,(P, V(P), Vh W(P))p,(P) >- Cl |Vh W(P)1" , 
X =1 

where pi(P) = Wr,(P) for i = 1, 2 and P C Qh. 

Condition (B). There exist nonnegative constants C2 and C3 such that for any 
nonzero vector Q,= ( 0), for any P E Qh and for any mesh functions V(P) and 
W(P), we have 
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C3 { \, W(P)j2 + 1 } (m-2)/2 lI2 
> OaC(P, V(P), Vh W(P)) 

> C2 { IVh W(P)12 + 1} (m-2)/2 If12 

where ai,p = ai,,,, jWj2 = t2 + t2 and the repeated indices indicate a summation 
over all i and j. This condition includes the statement that the problem in (1) is 
elliptic. 

Condition (C). There exists a nonnegative constant C4 such that 
(a) jf(P, V(P), VhW(P))| ? C41 + Vh WI2}m1)/2, or 

(13) I1(P, V(P), VAW(P))I ? C41 + IVA WI2I(m 0/2 S, with K > 0. 

Condition (D). There exist nonnegative constants C5, C6 such that for mesh 
functions V(P), W(P) we have the relations 

Z { 10a(P, , VAhW)/Oxjf + fa1(P, V, VhW)j I < CM(1 + IVA Wl ) /2 

and 

1E a,(P, V, VhW)/aVj I CO(O + lVh W12) 

Condition (E). There exists a nonnegative constant C7 such that one of the 
following is valid: 

taf(P, V(P), Vh W(P))/OVj 

(a) + I Imf(P, V(P), VA W(P))/O Wi, I + jaf(P, V(P), VhW(P))/Ox, I 
< C7(1 + lVh W12)(m-2)/2 

adf(P, V(P), Vwh W(P))/O Vl 

(13) + E2 {11(P, V(P), VhW(P))/3W,I + laf(P, V(P), VhW(P))/Ox,II 

? C7(l + |V. WlT)ms-2-)/2 

where K > 0, or 

(v) I&f(P, V(P), Vh W(P))/OVI + IM Of(P, V(P), VA W(P))/OWX,I = 0 

and 

h2 E If(P)f I C7, for in > 2, 

or 

h2 X f(P) t1 < C7, for ni < 2. 

We are assuming that m > 1 in all of these conditions and that all the constants 
C1, C2, etc. are independent of h. By being independent of h we mean that if we 
imagine that h goes to zero then these numbers are to remain finite in the limit. 

We shall use the notation, in order to save space in the sequel, m' and mF where 

m' = m- I and if- =m-2. 
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We shall also consider problems where we replace the expression 1 + IV, Wl2 by 
the expression 1 + I Vj2 + |VAWJ' in the appropriate conditions above. When we 
do this we shall denote the conditions corresponding to (A), (B), etc. by (A'), (B'), etc. 

Ladyzenskaya and Ural'ceva [8, p. 230] have considered the case that the in- 
homogeneous term in the differential equation associated with (1) satisfies the con- 
dition that If(P, u, Vu)l ? C4(1 + JVul2)m/2. Their development is relative to the 
max norm, ours is not, and their analysis rests heavily on the Dirichlet Growth 
Theorem of Morrey [12, p. 79] and on the extension of results of De Giorgi [12, p. 194]. 
We can prove some of these preliminary results but when we attempt to apply them 
to a solution of (**), by a summation by parts, we cannot use these results because 
on the AhA,,, , A,, p = {P: P E nh, U(P) > k, IP - Pol < p}, we do not have that 
U(P) = k. 

There is one more condition that we will add in order to prove the existence of a 
solution to (***) over general domains. 

Condition (F). For any mesh function t(P) E 0(t(Q,) and for every mesh function 
W(P) C- a0(Qh), there exists a function F(P, t(P), VhW(P)) such that 

ai(P, t(P), Vh W(P)) = 9F(P, t(P), Vh W(P))/O9 Wx,(P) 

and 

ai(P, t(P), VA W(P)) = aF(P, t(P), Vh W(P))/9 Wxi(P). 

We remark that this Condition (F) does not say that our equation in (**) is the 
Euler equation of a variational problem. Hence, our condition in (F) is more general 
than a requirement of Frehse [3, p. 316] who assumes that his equations come from a 
variational problem. We will also consider a sufficient condition for removing 
Condition (F). 

We also consider the special case that Q is a rectangular region with sides parallel 
to the coordinate axes. In this case, we assume that the lengths of two adjacent sides 
are commensurable and that aOh C aQ. We denote the sides of Q by si, i = 1, * * *, 4, 
with s3 on the side perpendicular to the xl-axis and the ordering increasing in the 
counterclockwise direction. The rectangular region offers simplicities which are 
not present in any other region. 

In this paper, we show, under certain constraints on the constants Ci of our 
conditions, that a solution to (**) exists; the problem in (**) is equivalent to that 
in (***). The proof of the existence of a solution is given in Theorem 1 and it makes 
essential use of the Brouwer Fixed Point Theorem. To apply that theorem, we must 
prove, in part, that a certain function, called X, defined on a ball 8, in H', (2,), maps 
8, into itself. By requiring Cn > CnC82mn'-i or Cn > CQ3n m'C8(C-'/-' + 1)n, along 
with other conditions in the various parts of Theorem 1, we are able to show that a 
J1 > 0 exists so that for 8, of radius ? J1 the mapping property is satisfied. We also 
prove that this q is Holder-continuous on 8, for m > 2 and 4 is Lipschitz-continuous 
on 81 for m C [4/3, 2). These continuity properties allow, under certain assumptions, 
the application of constructive methods; e.g. the Banach Fixed Point Theorem or 
some of the approximation methods in [16]. We also obtain certain uniqueness 
results from these methods. The special case m 2 is presented in Theorem 2. 

For the proof of Theorem 1 we assumed that Condition (F) holds. In Theorem 3, 
we present a sufficient condition-again based on the size of the constants C,-for 
removing that condition. 
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In Theorem 4, we obtain "interior estimates" on the norm of second-order 
difference quotients for solutions to (***); these estimates hold up to the boundary 
if Q is a rectangular region and if the expressions a; satisfy a condition given in 
Corollary 2. 

In our proof of convergence, Theorem 5, we make essential use of Theorem 4 
and the fact that we have two independent variables. In this respect, our proof of 
convergence is different from that of [3] and [5], although a more general proof of 
convergence is given in [3]. We show that for certain mesh sizes hn tending to zero, 
those associated solutions U,J of (***) may be extended to caU ? 3C. ,,(QI) such that a 
subsequence converges weakly to an element clo E C= 0(Q) and strongly to CUt over 
D' where D' C Q and the O , c3D' are in C'. From this and the fact that cIU - Un over 
DI,, we conclude that clo is a weak solution to (*). This result is strengthened in the 
case Q is a rectangle; that result is given in Corollary 3. 

All of the results mentioned above were explicitly derived under the assumption 
that Q(P) _ 0 for P E a Oh. In part (II) of the paper, we mention how this assumption 
may be removed and the resulting effects on our computations become obvious. 

Our assumption that the number n of independent variables is two was only 
important in Theorem 5. All results, with the exception of this, go through for n > 2 
with slight modification. The proof of Theorem 5 would require a constraint on the 
relationship between m and n. 

The author is grateful to the referee for his careful reading of the original 
manuscript. 

Existence, Uniqueness and Convergence. In this section, we shall consider 
uniformly elliptic difference problems of the form 

(a,(P, U(P), Vh U(P))).1 + (a2(P, U(P), Vh U(P)))X2 

(1) - f(P, U(P), VhU(p)), P E Oh, 

U(P) = Q(P), P E ? h 

A more general type of problem has been treated in [9] where Q was a rectangular 
region; the geometry of Q was essential to the methods developed in that paper. 
Here, we wish to specialize the equation to be of divergence form but to leave the 
geometry of Q as broad as possible. 

In the development of this section, we shall refer to Condition (A), Condition 
(A'), etc., and by this we shall mean those conditions given in the Introduction which 
describe the types of nonlinearity we are considering. 

We now divide this section into two parts. 
(I). The Case that Q(P) 0 for P . aQh. Let A0(Qh) = {t(P): t(P) is a 

finite mesh function defined on Qh and t(P) = 0 for P E aQh}. Then, we define a 
weak solution to (1) by following Ladyzenskaya [7, p. 91], as a solution U(P) to the 
problem 

(2 

(2) h2 E { (ai(P, U(P), Vh U(P)))e, + f(P, U(P), Vh U(P))}?(P) = 0, 

where U(P) C a0 and (2) is to hold for all t(P) C 0,. The Theorem of Gauss, see 
von Koppenfels [6, p. 10] or Cryer [2, p. 160], allows us to write (2) as: (repeated 
indices indicate summation over i) 
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(3) h2 5 I a (P, U(P), VhU(P))T,Z (P) - f(P, U(P), VAU(P))T(P)} O0; 
PE C2AI 

here 0h is the subset of n, described in the Introduction. 
Let H' ,(Qi) { V(P): V(P) C a. and there exists a constant K1 such that 

/ 1 /rn 1/rn 2 I V(p h' >i: I Vh V(p)I"1m) (4) jj V(P)h|, ,o E )jm) + hE h lh' <?1 IIV( ) 
IIPE Qj%' PE 0%' 

= K 

and K1 may be bounded, independent of mesh size h}. If we have two different mesh 
widths h, and h2, then the domain of definition of the function V(P) C H1 o(01) is 
different from the domain of definition of the function V(P) C H, h.), because 

Qh. j h. We shall not dwell on this idea until we consider the question of con- 
vergence. Suffice it to say at this point that we are taking h to be arbitrarily small 
but fixed. 

For any mesh function W(P) C ao, we define the lm-norm as IIW(P)11I - 
(h Z ,o I W(P)Im)l/m. 

In the sequel, we shall drop the prime from Q as it does not add to the exposition; 
our meanings will be clear from the context. 

We shall now state some lemmas of the Sobolev type which are essential for the 
technical manipulations which will follow. Their proofs proceed exactly as in [10], 
[l1], [12, p. 80], [7, p. 82] and [14, p. 10]. 

LEMMA 1. If V(P) C H,0(o(Q), m _ 1, and Q,, is bounded and connected, then 
hEQ IV(P)lm < C8h2 ,Qh IVV(P)I' where C8 ? 2 maxId,r", d} -2dm with 

d=, the maximum width of Oh in the x,-direction. 
LEMMA 2. If S(P) E H',,o(Qh) with 1 ? m < 2, then t(P) C 1r(Qh) where 

r = 2m/(2 - m) and |j|(P)j I < (2m/(2 - m)) IjV7 h(P)I I ? 
LEMMA 3. If t(P) C H>o(Qh) m > 2, and Q is strongly Lipschitz and bounded, 

then there exists a positive constant C9 such that maxP E Qo,(P)l < Co IIVth(P)I ? where 
Co ? 2V/2(C8 + 3m(Q)d)/m(Q). 

LEMMA 4. If f(P) is everywhere finite for P C Qi, and if h2 
2 

n f(P)f(P) = 0 for 
all t(P) C a0, then, for all P CE Qh, f(P) = 0. 

An immediate consequence of Lemma 4 is that a weak solution to the discrete 
problem in (3) exists iff a solution to the discrete problem in (1) exists for the same 
mesh width h. This lemma gives "numerical meaning" to the idea of a weak discrete 
solution. We introduce the weak solution idea only because we need some quantita- 
tive estimates in order to prove that solutions to (3), and hence (1), exist and to 
establish uniqueness and convergence criteria. This definition is made in "formal 
anology" with that used in partial differential equations. 

We now turn our attention to the question of existence and uniqueness of a 
solution to (3). The case m = 2 will be treated separately. We do not list explicitly 
all possible cases which can occur from our assumptions but only a representative 
sample to indicate the methods of proof. Some of our constraints on the constants of 
the problem, as given in the next theorem, come about as we are not able to prove 
all the results of the De Giorgi-Nash-Moser type; some general reasons for this were 
given in the Introduction. After the proof of the following theorem, we will give 
an example to which it may be applied. 

THEOREM 1. We assume in all cases to be considered that Condition (F) holds. 
(i) Let Conditions (A), (B), and (D) hold wvith m > 2. If Conditions (Ca) and (Ea) 
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also hold with Cl > C4C 2' "T" m, then (3) has a solution in H' ("0). If Conditions 
(CO) and (Efl) also hold and K > 0, then (3) has a solution in Hi ,(Q). If Condition 
(E,y) also holds, then (3) has a solution in Hin Io(Qh). 

(ii) If m E (4/3, 2), if Conditions (A), (B), (D), (Ca) and (Ea) hold and if 
Cl > C4C`2-' /ms then '(3) has a solution in H' O(Qj. Similar results hold for the 
other cases. 

(iii) Let Conditions (A'), (B'), and (D') hold with m > 2. If Conditions (C'a) and 
(E'a) also hold with Cl > C43"m I/mC1/mf(c?n /m + 1), then (3) has a solution in H o,,,(%). 
Similar results holdfor the other conditions. 

(iv) If m C (4/3, 2), if Conditions (A'), (B'), (D'), (C'a) and (E'a) hold and if 
Cl > C43mn '/rnC`/m(C"`/m + 1), then (3) has a solution in H,, O(Qj). Similar results 
holdfor the other conditions. 

Proof. Case (a): 2 < m. We first assume that (Cca) and (Ea) hold with 
C1 > C4C1/m2mn/m 

Let 8 = { (P): t(P) EE ,, h2 E JV,J'm < J"} for some positive number J1 
which is independent of h. Let us "formally define" the quantity Q(m); P) as a 
solution to the problem 

(5) h2 , {a,(P, t(P), Vho))?i + f(P, {, Vh)l = 0 
ah' 

for all C E 0, and with VA)=(4,l(,(.); P), 4),(Q(.); P)). 
It follows from Condition (F) that to each t(P) E 8, there exists at least one 

$Q(.); P) and it follows from Condition (B) that to each t(P) E 81 there is at most 
one Q(t(* ); P). 

Now, we determine those conditions which allow us to conclude that 4): 8- 8- 

In (5) let v = 4 and apply the conditions in (A) and (C) and Lemma 1 to get 

() C,h2 E 1|7h fl < h 2 
If(P (p a) + 

< C4Cl1m2m' Jm 
' 

+ (mh(Q)h))/n}(h E IVhtl/) 

Now we want the right-hand side of (6) to be < C,Jl -1, i.e. we want J1 so that 

(7) J n'1 > C4C'/m2m/m(mh(Q2h))mX//(CI - C4Cl/2m'/m). 

Hence, with J1 satisfying (7), we have that : 81 - 81. 
We shall show that 4 is a Holder-continuous function of t in the topology on 8, 

induced by its defining norm. Let t,, t2 C 81 with 41, 02 the associated solutions to 
(5). Then, if we set =v - 0)2, we get: (the summation is over P C Qh) 

h E (aj(P, t1, VA)1) - ai(P, 41, Vh42) + ai(P, t1, Vh(k2)- ai(P, 42, Vh42)) 

-(1 2)xi + (f(P, t11 Vhl) - f(P, t2, VhW2))(1 - 2)1 = 0. 

The Mean Value Theorem and our assumptions give 

h2 ai,,,(P, 01, (1 - OVAl + tV?h42) dt(01 - 02)2j(21 -2)i 

< h2 E {IJ 101 u( i (1 - 0 + ti2, VhO2) dt(i1 - S2)'(01 - ).j 

+ (IVhl12 + IVhi21 + l)m/2 C7(1t - '21 + |Vh(l - 42)1) I)1 - 21 
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Now, for m 2 2 = m - 2, m' m- 1, 

(41 - 2)i(4'i - 42X a0 2,)(P, O1 (1 - Vt)7h + tVhe2) dt 

? c2 {V,(i - t)401 + 02)12 + 1 }I'm/ dt IV7h(O - 'I2)1 

> C2 IVJ02 - i)IM/mf, 

where C, = C2/2 if (m - 2)/2 ? 1 and C' - 2l/mC2/22 if O < (m-2)/2 < 1. 
Hence, for m > 2, 

(C2/m')(|jjVh(ek2 
- 0)IO)mn 

< h 2 {C6 ( 1 ? |V'h2 |i) | 1 -21 | I Vh(02 - 
1 

+ (1 + 1Vhl 
12 

+ 1\7hi2 12)-/2C7 C1 -21 + 7h(tl - I2)I) 1401 -21 1 

? C (h2 E (1 + IVA h2j2)m/2)n/mC /r IIVh(tl - 42)Ir IIVA(41 -2)1Imr 

(2 X 1 + Va1 2 + jV 22)m/2)rn/mC(m+l)/mc7 |jVj(l - 

* I IVh(4l - 412)1 tn + C81/mC7 ||Vh(l - t2)In I I Vh(4'1 -t12)1 &. 

Therefore, for m > 2, 

(C'/m')(I IVh(2 - 1 ) |m 

- {Cs C6(2 .i1 + mh(Qh)))m/m 

? Ct+l)/m C7(3n (mh(Qh) + 2Jm)) + C8IC7} 1IVh(Ql - 12)IIm 

This is the definition of a Holder-continuous function of t E 81 with respect to the 
norm on S1. The H6lder exponent is independent of the mesh size h if J1 has this 
property. 

The existence of an element U(P) C 8, satisfying the equation in (3) is now an 
immediate consequence of the Brouwer Fixed Point Theorem. 

Now, consider that the Conditions (CO) and (E3) hold. The only part of the 
above proof which is in need of analysis is the determination of J1. Here we have, 
using Young's Inequality, 

Clh2 V hV I ?n <h2 E f(P, (, Vhl)( 1( ?! h2 E 14p* (1 + IVht 12)(m1)/2 

? C7' h I { mh (Qh) + Em/(MKM/M') (m Km/m-)(1Vh1)/ 

+ K mh(Qh)/ m m'}, 

where C = C7.2m-1-K-m'/m if in - Kr1n/177 > 1 and C' = C7 otherwise, and 
0. Therefore, for = Em/(MKt/m) we choose e so that (for example), 

C8/mCEm' /m (m - Km/M') = C,/2. Then pick J1 so large that 

C81mC1(nlh(Qh))"1r + {Kinh(nh)/flEn'KIM'/M 
< C1 Jm'/2. 

We now proceed as in the earlier situation, since the left-hand side of the above 
inequality is known. 

Now consider the case that (ET) holds. Using Lemma 3 we have that 
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Clh E IVh1I1 < max 10Lh2 XE lfl C9(h2 E lVh Im)l/m 
PE II, 

and hence we choose J1 so that C9C7 _ ClJln' 
Case (b): 4/3 ? m < 2. Assume that (Ea) and (Ca) hold. We prove the con- 

tinuity of Q(t(.); P) over 8,. 
We obtain, using the Holder Inequality, 

h 2 (41 -02).(Ol - 02),j fai , (P, (1 - t)Vhkl + tVh42) dt 

2 C2h I f l + VVh(1 - t)41 + t02} 1 12}2 dt 1h(41 - 02)1} 

> c, (2 47 1t{1+Cv{ 1 t +, 2 
} 

W/2 d) ) (| ( _ 
1 0 ,2. 'a C2h I~ f I + IVh (l - t)41 + 452}I dt))(IIJVJ01 - 02IIn 

Therefore, 

CAJ ~ ~ I _hO 
m/m 

-m/2< h21 1/2d 
C2(I |VA(4l - '2)Imin) < I (f {l + 1V'h Il - t01 + t02} | dt)) 

{(C6 + C7)h2 E 1i - 421L IVA(01 - 42)1 + C7h 2 I |Vh(1 - W2)I'1 1 02t1 

Now 

(f' {1 + V I{ (l - t)41 + t42 12 }I/ dt) < (1 + 1Vh41 12 + IVhA2 12)Y2 

and hence, using the Holder Inequality and Lemma 2, 

C2(|IVA(41 - k2)m10 )2 < t2(2+m)/2 J. + mh(1h)} 

*{(C6 + C7)h2 j Jt1 - t2lI jVh(4l - k2)1 + C7h2 EIV(t l -2) 141 - 4'211 

_ {2 JI + mh(QA)} {(C6 + 2C7)( 2fl/fii)m }.IIV(4' -42)IIm 

12 MVh(hl - 2)-nl 

Note that this shows that the function q5Q(.); P) is a Lipschitz function on 81. 
The remainder of the proof proceeds exactly as in Case (a), even to the use of 

Lemma 2 in establishing the mapping property of 0, i.e. for the computation of J,. 
Now, we consider the mapping property when (A'), (B'), (C'a), (D') and (E'a) 

hold for m > 4/3. As in (6), we have 

Cl h2 E |lVhOl- =< h 
2 

lf(p , t, VhO)l 1f 1 

_ C4CS |i|vh)ii m (h2 1 (I + t2 + I Vht 12)m/2)m'/m; 

that is 

Cl(I lVh4'llm) < C4C8 3I I (Mh(Qh))_ /m + (CW8/ + I)(lIVh,jIl )m'} 

Hence, we must require that 

C1 > C4 3 m 2/mC/(C / + 1) 

in order to establish the mapping property. 
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The Holder constant now comes from the relation 

(C2/M')(|jVsh(2 
- 

0i)11n) 

2 
6 E (1 + 1i 12 + 12I + 1Vhc|2)rn/2)nm 1C/m + c 7/m 

+ (h2 E (1 + 11 12 + 12I + Vhe112 + IV^%212)m/2)mqmw+ )" 
m 

I I Vh(4l - 2)14 lo'IJIIVh(1 -WI2)Io"S. 

Now, use the mapping property to complete the bound on the Holder constant. 
The case that 4/3 -< m < 2 yields a Lipschitz constant computed from the relation, 

assuming that the primed conditions hold, 

|IVh(4>l - Imn 
? {(2 J1 + mh(Qh))/CS1 {(C6 + 2C7)(2mn/fli)m/ml }IVh(Is - l2)flr 

Remark 1. If we assume that the inhomogeneous term f(P, ,, Vt) satisfies a 
condition of the type, 

(8) E {I I(P, t, VhO) + vi 1af/t/ j I} + V3 jaf/Oal < C7, 

where vl, V2 and v3 are positive constants, then our mapping property is always 
established for m > 2 when we pick C7mh(Uh) < C,J'n2 and when we set Pi = 0 for 
j- 1, 2, 3, in the above. If v, E {O, 1} and aa1j/a = 0 over 81, then the continuity 
condition takes the simpler form, setting 

[Vl, V2]- max{Pv, V2}, 

IIVh(4l - 02)IIm < C7h2 Z [VI, V2] JV(1 - W2)I + V3 t11 - t2I} 1'S - '21 

This case occurs if, for example, f = sin{ ,, + t, + t}. 
We will illustrate some of the ideas of the last result in the following example. 
Example. Let ai(VhU) = (1 + IVhUI /n) Un for m > 2. Then, a.(VO4) 2 

(tn/m)a(l + IVh'ln2/m)mi2/a4 and hence Condition (F) is satisfied. Also, we have 
that C1 = -mn/2 = C2 if m > 3, C1 = C2 = 1 if m C (2, 3], C3 = 3/1in if m E (2, 3), 
C3 = 1 + 2m2 if m > 3, C5 = iV12 if m > 3, and C5 = Fl(im?h/S2 if m C (2, 3). 
Suppose we consider the problem of finding a mesh function '(-( ); P) C (t(%^) such 
that for every t(P) C aO(Q2) we have 

h2 E {(1 + 12A'h /2) fSit + (1 + jV{I2 + sin2 t)m'/} = O 

where Qh has not been specified yet. Note that C4 = 2. If we can find a mesh function 
1kE C o(Qh) such that 

If6) = min I( V), 
VE a e 

where 

1(V) = h2 Ej { (fvl/2n)( + jVhVj/ff)M/2 + (1 + iV,j2 ? sinat)m'/2 V} 

then this mesh function ,V is what we will call 4. If we require that Cm > C'C822""', 
i.e. 1 > 2m+m'm1+1 max(d , d2,) form E (2, 3)andl > Fnmm/22m+mImltlmax(d2 , d2' 
for m > 3, then a constant J1 exists and the set 8, is meaningful. In fact, we may take 
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m'/mn mImm -m' 'A1 2 
. ) J 2= 2 (max(dx,, dx ))m/(1 - 2 max(dx,, dl)) in E (2, 3], 

2m+m 2 2 ffmm/22? M+m'?--i 2 2 = 2 m+mm(max(d, dj.2))m/(1 - 2 maxkda,, d2)). m _ 3. 

Then, for V C ? o(Qh), t E 81 and e > 0, we have that 

/ m 
- ) I |V Vl Im - (2m + m2 (1& m 4 1)/r JlJ/ern')(max(d I, dX2)) 

Now, choose e so that l/mnm - e/m > 0 and we have that I(V) is bounded from below 
on a(,,(). Since I(V) is clearly continuous, we have that an 4,' exists. Now call 
OQ(.); P) this mesh function A1. 

As an almost immediate consequence of Theorem 1, we have the next result. 
COROLLARY 1. If 4/3 ? m < 2 and if 

2 (2+m)/2 J1 + ?,h (2-m)/m (C6 + 2C7)(2mn/(2 - ,n))( | 1)/m C2} 

whenever conditions (A), (B), (D), and (Ca), (Ea), or (C,B), (E3), or (Ey) hold, or if 

{2(2+m)/2 J + mrh(Qh) } { (C6 + 2C7)(-2m//f) M/M} < C2, 

whenever Conditions (A'), (B'), (D'), and (C'a), (E'a), or (C'13), (E'0) hold, then 
OQ(*); P) is a Lipschitz function on 81 and has one and only one fixed-point, i.e. one 
and only one solution to (3) exists. 

We shall now consider the case that m = 2 in establishing criteria for the con- 
structive existence and uniqueness. 

THEOREM 2. If conditions (A'), (B'), (C'a), (E'a) and (D') are satisfied with m = 2, 
then (3) has a unique solution in aO(Q,,) if there exists a positive constant A such that 

1 - AC2 + Al(C6 + C7)C8/2 + C7C8} < 1; 

in this case the solution is completely constructible. Note that this condition is satisfied 
if (ETy) holds with Oai/lV 0. 

Proof. Let 82 = {M(P): (P) E (4i(0h), 1IVIlknm J1} and define the function 
OQ(.); P) as the solution to the problem, for IA a parameter, 

h2 E Z - oxi_ z; + pai(P, i, VhM.i + pf(P, i, Vh0)fl = 0. 

Remark 2. We observe that in all cases considered on m, if 0ail/V = 0 and f 
depends on P alone, then a solution to (3) exists and it must be unique. 

It is natural at this point, especially after our last result, to determine if we may 
remove the very confining Condition (F). We shall state and prove a theorem on a 
sufficient condition for the removal of this condition for the case m > 2. The case 
m E [4/3, 2) is treated in a similar manner and the modifications necessary will be 
read off from what we give. 

THEOREM 3. If the hypotheses of Theorem 1(iii) hold, with the exception of Condition 
(F), and if a positive constant ,u exists such that pC2 - 2mm/' > 0 and 

p(C5 + C4C8/-)3nm /m(l + C8)Y"" < 1, 

then (3) has a solution in H',o(Qh) 

Proof. We need only prove that 0(&(.); P) exists for all t(P) EE 8 as this was the 
only place Condition (F) was used. Let 4/(v(.); P), for v(P) (E 8 and ,u a parameter 
to be determined, be a solution to 
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h E {(1 + IVh3VI2)r/2\Z. + Hua (P, ~, 0) 

+ A,ua - (1 + IV I2 ) n/2 
2 

[/ ; + .tf(P, M V h)f= 0, 

where 

jj,i as- j,vi P(P, t tVvY) dt. 

Clearly, t'(v( ); P) exists as 

I()= min I( V) 
VES1 

where 

I( V) = h {(I + lVh VI2)-/2/m + Aai(P, {, O) Vj + jAdj, V, Vj 
(1 + IVhVI2)m/2 Vx2i -- lf(P , V I.) V. 

Now, we show that VI: 8, -*- 81. As in Theorem 1, we have that 

|IIVAflIm ? I(C5 + C4C (M)3m {(mh(Qh)) + (1 + C8)O Jmg}. 

Now, pick J,-' = max{A1, A2 } where 

A1 - ,U(C5 + C4C8 /)3m'm'/mB - (1 - 1(C5 + C4C8/m)3m'm'/m(1 + C8y) '/), 

A2 = C4Cl/n2'm/m B . (Cl - C4C8/m2m rn/1n) 

and 

B = (mh((Qhnm))/; 

note that A2 comes from (7) when the primed conditions are used. Now we have 
that VI: 81 -81 

Now, observe that IIv, - vn -*0 if v - O -+0 for each P E Ph. Hence VI is a 
continuous, in H1O(,#2,) norm, function of v(P) E 81. By Brouwer's Fixed Point 
Theorem, at least one fixed point of 4,6 exists on 81; we call one of these k(t(.); P). 

Now, we shall obtain "interior estimates" for powers of second-order difference 
quotients, i.e. we shall show that for any subregion D of Q such that D C Q, we have 
that IVh U_,, s = 1 or 2, is in lp(Dh) for some p > 0 and for all h. These estimates 
will be used when we prove the convergence of the solutions of the difference equation 
to a solution of the differential equation. In a remark at the end of the proof of the 
next theorem, we will explain the generality of parts (d) and (e) in the statement of 
the next theorem. 

THEOREM 4. (a) If U(P) is a solution to (3), if h2 E IVAUUl is bounded-inde- 
pendent of h-over its domain of definition, if m > 2, and if conditions (B), (Ca) and 
(D) hold, then there exists a positive constant J4 which is independent of h such that 

[2 72(1 + VA Ui2)(m))/2 VA us.12 < J4 

where 71(P) is a smooth mesh function with support over compact mesh regions of Qh, 

and J4 is given in (10), and U,. = U., or U*. 
(b) If U(P) is a solution of (3) with m = 2 and if the corresponding hypotheses of (2) 

are satisfied, then h2 Z 12 IVhUr,I2 < J5 with JA given in (11). 
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(c) If U(P) is a solution to (3) with m C [4/3, 2] and the appropriate hypotheses 
hold as in (a), then h2 Z, tfl IVhU, ? 4J2 where J6 is given in (1 2). 

(d) If m > 2 and t(P) C 83 where, for some positive number J7, 8)3={ t(P): t(P) E 81 
and IlIVhtilI(ml) < J7for K > O}, if Conditions (B), (C), and (D) are satisfied, and 

if4,(O(.); P) C Hi, o(h) for each t 83, then there exists a positive constant J. which 
depends on J7 and other quantities such that 

2 E 2(1 + IVh4,I2)(m 2)/2 jVh4o.j12 < J8. 

The number J8 is estimated in (13). 
(e) If m C [4/3, 2], if t(P) C 84 where, for some positive number J9, 

84 = {t(P): ,(P) C 81 and max[JIVhII12(m.-l 1 IV hjImI/(m-l)] < Jg, K > 01, 

if Conditions (B), (C), and (D) are satisfied, and if c(/(); P) E H,(Qh), then a positive 
constant J.1 exists such that 

h E 77VXz|< l 

Proof. (a) Let t-,us, for s = 1 or 2, and A,u.(P) E Ea(Q). Then, using Gauss' 
Theorem, we obtain 

h2 j ai(P, U(P), Vh U(P))r.j = -h2 E (ai(P, U, Vh U))%8Axi 

= -h 2 ai.p,BUkX& + la;osUx + d,,X8 

where 

as p = f ai,,(P, U, Vh ,) dt, C = (1 - t) U(P - h8) + t U(P), 

di = f ai,,(P, C, Vh U(P - h.)) dt, P - = (x, -h, yp), 

P -h2 = (X,, YPv 

di , - = ai ,(P, U(P - h.), VhU(P - h.)) dt, P = (1 -t)(P- h.) + tP. 

Substitution of (9) into (3) gives 

h2 , { {ai,k UXkxs + ii,. UUZ + di,2. lAz; - f(P, U, Vh U)t. = 0. 

Let q7(P) be a nonnegative mesh function such that the closure, relative to our 
neighborhood system, of its support is contained in a mesh region Dh such that 
DI C Qh. Let ,(P) = n2(P)Ux.(P). Using [8, p. 10] and Conditions (B), (D), (Ca), 
we obtain the estimate 

C,h2 
2 
2(1 + IVhUi2)m/2 IV U. 12 

(10) < h E {(12C3 IVh27I 71 + 271C6)( + jVh uj2)1 Vh Uz. IU., I 

*(5C5 + 4 jVh771 (7 1 U..j C6 + n I U 5,j C5))(l + IVhUI) 

+ C4(l + IVhUI2)mn/2(272 IVhUx.I + 22 IVh27I* I uL 4)1I 

Using the Cauchy Inequality, for Ei > 0 (i = 1, * * *, 4) and so that 12C3E1 + C26e + 
CsC3 + C4C4 = C2 with el = C2/48C3, 62 = C2/4C6, 63 = C2/4C', and 64 =C2/4C4, 
then we obtain the bound 
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2C2h2 E w2(1 + 1VA U12) V2 UIV, 

< r2" 2 {2v2C42/C2 + (288C3 + 2C6 + 2Cs) 1V^nI2/C2 

+ 2q tVhtIt (C8 + C4)}(1 + IVA Ul() 

+ max{ l, 2mn}h2 1 2 tV78 C'(1 + VI Ulj). 

If we now choose In(P)I and tVAti(P)t to be bounded over il,, then we have that 
n(l + IVAUI2)(m~2)/4 IVAUX.j C 12(02A) for s = 1, 2. Our constant J3 is now estimated 
by the inequality 

C J4 < 4A{2 (C4 + (144C3 + CD + CS ) + C2(CB + C4)} (mh(lh) + J") 

+ 2AC2 max{1, 2n ) CI(m(%(QiZ) + J1 (mh(Qh))l/m) 

where A =(max{maxtil|, maxi V71I })2. 

(b) If m = 2, we have 

C(II|V,, U. | 10)2 
2 6C3{2h 2 2 61|V , u + hU 2V ,,'I V12 Ut/V, 

+ CXh,2 72 + 4h2 E (C6 IVtI t7 tVI, U12 + C5j _V Ut) 

+ 2C4h2 I IV A I1 (1 + IVh U 2) 

+ C4e2h E 2 VAUz,I2/2 + C4h U1 
2 

( + tVAUt2)/2e:. 

Now choose e1 = C2/24C3 and e2 = C2/2C4 to get the estimate 

C2J5/2 < 144(C32/C2)h2 2 IV,,t112 IV,,UI2 

(11) + C'h2 ? 712 + C4h2 E 72(1 + 1,7V U12)/C2 

+ 4h2 E (C8 I V, |IIVI, Ul + C')ti IVh UI 

+ 2C4h2 E 7 IVh77n (1 + IVI, U12). 

(c) Now apply the H6lder Inequality to (10) to get 

C2(h2 E (1 + IV,, U12)m/2)rn/(h2 E 71v 1V Uz,,|)2/m 

2 (h Vi {(12C3 IVl + ,C8)(l + IV,,UI2)m'/21m/m')tm'/n I(V&U )|t| 

+ (h2 E {7(l + Vh U12)m'/2ImIm')m'/m(h2 E (7 V U V I))lU. 

? C5h E 2 + 4C1h Z IV,Xn n(l + VA U12)m/2 

+ 4C5h U2 I 2V,, (1 + V U2)'2. 

Now apply the Schwartz Inequality to the first two terms on the right side of the 
above to get, taking e- = C2(h2 E (1 + IVAUI2)"/2)rn/-/2 and e2 = elt 

(h2 E 
7itm 1VA U., jm)2/m < (2/C2)(h2 E (1 + IvA ui2)"'2'2)-;c/ 2 C2 2 

+ (h2 (1 + IVA UI2)m/2)-m/m 

(12) I{(h2 {(12C3 1V,,n7 + 7C6)(1 + 1V,, U2)m /2Im/m')2m'/m 

+ (h2 Z {1(l + IV, UI2)m/2Im/m) /?/C2 

+ 4C65h 2E 1V,h 77(1 + 1V,, U12 )?n/2 + 4Cah 2iE 7 IV1,7n (1 + 1V, U12).'/2 
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(d) Now let t(P) C 83 and let OQ(.); P) be the solution to (5). We now derive 
an estimate on the norm of V h0,&('(.); P) which is valid for all t(P) E 83. 

In this case, we have 

h 2Er aj(P, i, VhW)?j = -h 2 
(ai(P, (, Vh0))..A.j 

= hh X {ai,PktXkXs + ai,te2* + dijX81}/Li 

where ai, k ai, , and ci,--. is defined as in (9) but now the arguments of the associated 
integrands are (P, {, VAh) with 0 = (1 - t)4(P - h.) + to(P), (P, t, VAh(P - hj) 
with = (1 - t)t(P - h8) + te(P), and (P, (P - h), VAh(P - h.)). Then, taking 

14p) = 2(p)(k,, assuming m _ 2 and K > 0 and setting mi = m -1 - K, 

C2h2 E 2(1 + 2Vhckl) 2VhXA2 

2 E (6C~2~ + ~2Coe2/2 + q2C5E3/2)(l + IVhXI2)r/ |V,41 
+ C (h2 ?:i: (1 + 1Vh)m) /(h E | V2+r, |2) 

(13) + h2 Ej 6C3 IVn2 2 2 (1 + 1V2412)m1 

+ Ch(h E IVA I)m(h Z 2m/m(l + 1V4I)2)m/rn/2 

+ C5h2 1 2(1 + IVh4l2)1/2/2E3 + 4h2 > C'(l + V,4I2)" /2 

+ 4Ch(h2 Z 1hm/m (l + 1Vh(k2)m12)m/2m(h2 E jV,lm lVAl) 

+ 2C4(h2 I 
1 mV"(m)l/rn(h2 E 1 V72./;'i(1 + |V lh2 )rnr/m;)mI/rn2 

Now choose e1 C2/48C3, h 2 = C2/16C, h 3 1 
C2/26C3 , e4 = C2/16C4 and observe 

that forp > 2 we have 71P < t2 whenever n1 _ ito get an estimate on J8 from (13). 
(e) If 4/3 < m < 2, then we use (13) and the Schwartz Inequality to obtain an 

estimate. 
Remark 3. Parts (d) and (e) of the last theorem are stated in their present 

generality so that we may show the exact dependence of the norms of IV k4x,. on the 
properties of the coefficients. 

In our next result we prove that if Q is a rectangular region, then our "interior 
estimates" may hold for all of Qh. 

COROLLARY 2. If Q is a rectangular domain with vertices (0, 0), (a, 0), (a, b), (0, b), 
if a/b is rational and h divides a and b, yfa1(P, U, VhU) = O for P E 53 + 54 and 
a2(P, U, VAU) = for P tE sl + S3, if conditions (B), (C) and (D) are satisfied, and 
if U(P) is a solution to (3) in H1 ..(Qh) with m > 2, then there exists a positive constant 
J11 such that, for s = 1 and s = 2, 

2 (1 + |VA Ut2)""2 IVAUs 2 Jll 

where .h1 depends on liv hU Im and the material constants of our conditions. 
Proof. Let r-= Ux*2 where we have reflected U as an odd function. Then, inte- 

grating by parts in the xl-direction, we get the identity 

h2 {a,lss + Uzxl = 0. 

Proceeding as in the development of (9), we get 

h2 E2 {ipUlixs + aiulwz + ai, Ulz + fuS,l11} = 0 

In ou 'etrsl epoeta f0i rcaglrrgo,te u itro 
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and hence, for ei > 0 with i = 1, 2, we have 

C2h 2 (1 + IVh Ul 2)2 IVh U. 2 

< h E (1 + Vh U12) {CB IVA Ul + C5} IVhA UI 

+ h2 E C4(1 + IVh Ul 2)'/2 Vh U,.I 

? ((fl + 62)/2)h Xj (1 + fVtUI2)rn/2 fVU, I2 

+ (C4/2C2 + C52/e + C/61)h (1 + IV UI2)/2. 

Now we shall prove the convergence of solutions of the difference equations to 
weak solutions of the differential equation. Our proof will make essential use of our 
interior estimates and the fact that our equation has two independent variables. 
A different convergence proof, with less stringent hypotheses, is to be found in 
Frehse [3, p. 331]. 

Let Q be a domain with the dQ in C1. Let D, D' be domains with dD, AD' in C1 
and such that D' C D and D C U. Let hn be a sequence of positive numbers tending 
monotonically to zero such that 0,.,, D fl,.. Let h'> 0 be such that for n 2 N(h) we 
have that D,, D D' and Q D DA,. 

Assume the appropriate-we have not yet made an assumption on m--hypotheses 
of Theorem 1 are satisfied so that a solution, U*(P) C ao(2), exists to the difference 
equation 

n { a,(P, Un(P), Vt. Un(P))Wi(P) + f(P, Un(P), V. U.(P))M(P)I 0 
PE U,% 

for all t(P) C ao(12h). Let i,,(P) be the "filling-in" function given in Stummel [15, 
p. 180]; i.e. 

(14) n(P) - hn E Sh(P - Q) U y(Q), 
Q 

where Q runs over all mesh points of the plane and 

Sh(P - Q) = [sin(7r(Xl - -))/T(Xl -1 )][sin(r(x2 2))/1(Xa - W2)] 

with P = (xl, x2) and Q = (1, t2). 
By Theorem 3, we have that Un(P) E H2(Dh") or we have U,,(P) C H,2(DA) 

depending on the size of m. Let us assume m ? 2. Then there exists a constant inde- 
pendent of hn such that I I Un(P)I 12 < J4 for each n _ N(h') and this norm is taken over 
Dh,.. Hence, there exists a constant J4', independent of hn, such that 2 = (P) 4 I J 
where this norm is over D'; see Stummel [15, p. 181]. Applying the Variant of the 
Calderon Extension Theorem [13, p. 74], we have new functions Vn(P) C 3C2,(2) 
such that Vn,(P) = 9an(P) in D'; these functions are also uniformly bounded over a 
in the 5C2,,(Q) norm. Hence, a subsequence of 1o,,, which we still call V", converges 
weakly to some V0(P) E jC2.0(Q2). Using Theorem 3.2.3 in [12, p. 70] and Theorem 
10.2 in [4, p. 28], we conclude that a subsequence of C,, converges strongly to V' 
in 2 Since Je',0(Q) and H,,,O(Q,) are conditionally compact with respect to 
weak convergence, the above analysis shows that if a subsequence of ?,n, which we 
still call l,,, converges weakly to an element lo C JC,,0(Q), then for any set D' C 0 
satisfying the conditions above, we have that cU,, converges strongly to '?o in 3C,(D'). 

We now claim that, for all v C C(D'), 
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(15) ff {a,(P, VO(P), V'C0(P))W, (P) + f(P, VO(P), VkDo(P))r(P)} dxl dX2 = 0- 

To see this we first observe that cU1(P) = Un(P) for P E %,, and that, using the 
methods of proof in [15, pp. 186-187], derivatives and difference quotients of '1Ln(P) 
converge strongly to ?0o(P) in 5JC (D'). Now, to each P E Qh? with n > N(h') let us 
associate the rectangular region An(P) determined by the vertices (xi, x2), (xl + h, x2), 
(xi + h, x2 + h), (xI, x2 + h). Over Ah(P) let us define Un(Q) = Un(P) and 
VhAUn(Q) = VhU,(P) for all Q E An(P). Now we observe that there exists ei(n) for 
i = 1, 2 such that e,(n) --* 0 as n -* co and 

rJL(P a,(Q, U6, Vh U.)xi(Q) dQ 

-{ j(P) + ei(n)}h2a (P, Un., Vh U.) + O(h1)(l + e (n)). 

Also, from the strong convergence derived above and the fact that c1,,(P) = Un(P) 
for P E Rh and the appropriate conditions in (A) to (E), we deduce the result that 

IJ {a,(Q, U,, VhU,,) - a,(Q, C9n(Q), V'u,,(Q))1I;j(Q) dQ -+ 0 as n a-+ c* 

In a similar manner, we have that 

Jf f(Q, U,, VA Un)t(Q) dQ = h2f(P, U., Vj Ut)?(P) + e(n) 

and 

L {f(Q, Un,, Vh U,) - f(Q, %ln(Q), V'1,,(Q))}t;(Q) dQ -+0 as n -+ co; 

here e(n) -*0 as n --+ co and comes from Condition (E) and t E C'(D'). Using the 
fact that U,,(P) solves the difference equation, the additivity of the integral, and the 
linearity of t and VP in the integral, we conclude that cU0(P) is a weak solution of 
(1). The case m E [4/3, 2] proceeds along similar, but simpler, lines. Therefore, we 
have proved the next result. 

THEOEM 5. Let hn be a monotonically decreasing sequence which converges to 
zero and such that DA.+. D Q,.. Let the og be in C1. Let the appropriate hypotheses 
of Theorem 1 and Theorem 3 be satisfied. Let Un(P) be the discrete solutions to (3) 
with h = h,, and let cU,,(P) be as in (14). Then, there exists a subsequence of 1Ln(P) 
and an element '110(P) E aC',,,0(Q) such that 'L,,(P) converges weakly to 910(P) in 
GeCl (Q ,,(P) converges strongly to ?0(P) in 5C1( D) with AD in C' and D C Q and 
the function 91o0(P) is a weak solution to the differential equation (1); i.e. (15) holds 

for every t(P) EE 3C o(Q) 
As an immediate consequence of the last result and that in Corollary 2 we have 

the following. 
COROLLARY 3. Let Q be a rectangular region and let h,, tend monotonically to zero 

with h,, > 0, Ohn. + D Oh. and aUA. +,l D a Qh.. Let Un(P) be a solution to (3) and let 
L,,(P) be as given in (14). Let the hypotheses of Corollary 2 be satisfied. Then there 
exists an element 'Ut0(P) E JC2,,(Q) such that some subsequence of 9in(P) converges 
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weakly in C to ?0o(P) and a further subsequence of 91L.(P) converges strongly 
to c1to(P) in SC' o(i). This function U1o(P) satisfies (15). 

Remark 4. From results in [12, pp. 78-81], [1] and [13], we may use estimates on 
norms of second-order difference quotients over all of Oh to prove the pointwise 
convergence of solutions of (***) to weak solutions of the differential equation. 
These same techniques also work using estimates of the H1 ,o(Q) norm of solutions 
to (3) provided m is sufficiently large relative to the number of independent variables; 
see [12, p. 83]. 

(II). The Case that Q(P) 0 0 for P E Qh. We shall assume that there exists a 
function q(P) E C2(j) such that Q(P) = q(P) for P E fh and q(P) = q(P) for 
P E t3Q. 

Now we reformulate (14) slightly. We seek a mesh function U(P) E a(t2,Q) such 
that for all ,(P) E a0(R,) we have 

(16) h2 E {a1(P, U + Q, VA(U + Q))t, + f(P, U + Q, Vh(U + QW) = 0. 

It is clear that all of the estimates we have obtained in (1) go through for (16) with 
slight modification. These new bounds will clearly depend on discrete lm-norms of 
Q(P) and its difference quotients. 

We may extend our data to the case that q(P) has a continuation 2(P) into Q 
such that q(P) C a22(). Our analysis in this case would follow that of our proof of 
convergence. 
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