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The Dirichlet Problem for a Class of Elliptic
Difference Equations*

By G. T. McAllister

Abstract. Under suitable assumptions on the order of nonlinearity we prove existence
and uniqueness theorems for difference Dirichlet problems of divergence type. We also show
that the discrete solutions converge to a solution of the continuous problem. We do not
assume that our equation comes from a variational problem. Some of our results are
constructive or allow for the application of constructive methods.

Introduction. Let © be a plane bounded region such that the boundary of @,
a9, is of class C*.

If P is a point in the plane, then we denote it by (x,, x,). Place a square grid on
the plane of grid width k. All points of the form (mh, nh), with m and n integers, are
called mesh points. Let Py, = (xo1, Xo2) be @ mesh point. Then a neighborhood of P,
is the set of points 9UPo) = {(Xo1, Xo2)s (Xo1 + B, X02)s (Xo1 + B, Xoz + h), (Xo1, X2 + ),
(xo1 — h, Xo2 + h), (Xo1 — b, Xoz), (Xo1 — b, Xoz — h), (Xo1, Xoz — h), (Xo1 =+ h, Xo2 — h)}.
We define @, as that set of mesh points P such that 9U(P) C &, and we define the
boundary of Q, as those mesh points P in  such that at least one element of 9U(P)
is in the exterior of & = @ + 9Q.

Let V(P) be any function which is everywhere finite for P € Q, + 0Q, = Q5;
such a function will be called a mesh function. Let P = (x,, x,) be a mesh point.
Then, for any mesh function we define forward difference quotients by

Voi(P) = {V(x, + h, x3) — V(P)}/h, Vol(P) = { V(xy, xo + h) — V(P)}/h
and backward difference quotients by
Va(P) = { V(P) — V(x, — h, x3)}/h, Ve,(P) = { V(P) — V(xy, xs — h)}/h.

The vector (V,,(P), V.,(P)) is denoted by V ,V(P) and the vector (V;,(P), V,,(P)) is
denoted by V,V(P).

We denote by @; (and ;') the set of points P &€ {, such that, for any mesh
function V(P) defined on Q,, the vector V,V(P) (and ¥V ,V(P)) is defined using only
mesh points in &,. If D, is any set of mesh points in the plane, then we define m,(D,)
to be A® times the number of points in D,. A set of mesh points will be called con-
nected iff one can go from any mesh point in the set to any other mesh point in the
set along line segments of length % connecting only elements of the set. We assume
all mesh sets are connected.

A function u(P) € C?(Q) iff the support of u(P) is a compact subset of Q and all
pth order partial derivatives of u(P) are continuous over . The set £,,(Q) denotes all
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functions whose absolute value is Lebesgue integrable to the mth power. The space
Jer, o(Q) is the completion of C¥(©2) with respect to the metric of £,(©) applied to
all partial derivatives up to order p; for a more detailed discussion see Morrey
[12, pp. 62-90].

In this paper, we shall study selfadjoint uniformly elliptic differential problems
of the form

(ai(P) M(P), VU(P))),‘ = f(P) M(P), vu(P))l P E Q,
u(P) = q(P), P& oQ,

where the repeated indices are summed and Vu(P) = (u,,(P), u,,(P)) with u, (P) =
du(P)/dx;. We consider the difference approximation associated with this equation
for given mesh size & to be given as

(ai(P’ U’ vh U)):h‘ = f(Ps Us vh U)i P e an
U(p) = Q(P), P E .

The mesh function Q(P) is related to g(P) in that we assume g(P) has a nice extension
to Q; for our purposes it is sufficient to assume that it may be extended to @ as an
element of C*(), call it §(P), and we define Q(P) = G(P) for P € 9Q,.

The results of this paper will also hold for the difference problem

(@:(P, U, V,U))s, + (ai(P, U, V,U)),,
(**), = f(Ps Uy vh[j) + f(Py U’ 6h U)’ P E th
UP) = O(P), P EC o0,

Let @4(£2,) be the set of all mesh functions defined on 2, and such that they
vanish on 4Q,. Any solution U(P) of (**) will be such that, for every { € G(24),

)

**)

(F**) n QZ {a,(P, U, V,U)., + f(P, U, V,U)¢} = 0.

To save space, we shall often drop the index set of the summation. If we used the
approximation in (**)’, we would add to (***) a summation over Q;’. It is this last
equation we shall study when we prove results of existence, uniqueness and
convergence.

It is clear that to prove conditions for existence, uniqueness and convergence, we
must make some assumptions which describe in a gross sense the types of nonlinearity
we are considering in (¥*). We list these classical assumptions as follows (for a more
detailed analysis of the genesis of these conditions see {7] and [12]):

Condition (A). There exists a nonnegative constant C, such that, for mesh
functions V(P) and W(P),

> a(P, V(P), VA W(P)p,(P) = C\|V,W(P)|",

where p,(P) = W, (P)fori =1,2and P € Q,.

Condition (B). There exist nonnegative constants C, and C; such that for any
nonzero vector £ = (%, &), for any P € Q, and for any mesh functions V(P) and
W(P), we have
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where a;,, = a;,, |£]° = £ + & and the repeated indices indicate a summation
over all i and j. This condition includes the statement that the problem in (1) is
elliptic.

Condition (C). There exists a nonnegative constant C, such that

@ |f(P, ¥(P), VaW(P)| = Cu{1 + |VaW['} "7, or

B (P, V(P), ViW(P)| £ Cu{l + |VaW|} 17972 withk > 0.

Condition (D). There exist nonnegative constants C;, C, such that for mesh
functions V(P), W(P) we have the relations

> {[8ai(P, ¥, VaW)/dx;| + |aP, V, ViW)|} £ Cs(1 + |V, W)™ D72

i

and

Z |0a,(P, V, NV, W)/V| S Cs(1 + |V |22,

i

Condition (E). There exists a nonnegative constant C, such that one of the
following is valid:

[8f(P, V(P), V\W(P))/dV|
(@) + 2 {19f(P, V(P), VAW (P)/dW.,| + [9{(P, V(P), V\W(P))/dx.|}

< G0+ [VawPH™ 72,
[8f(P, V(P), V. W(P))/dV|
® + X {1fP, V(P), VAW(PN/3W.,| + [9f(P, V(P), Vs W(P))/0x.|}
S G+ VW)
where « > 0, or

@) l0f(P, V(P), VAW (P)/V| + 3 0f(P, V(P), V,W(P)/IW..| = 0

and

n Z [f(P)| = C;, for m > 2,
Qn
or

B fP)|" S Cpy form S 2.
n

We are assuming that m > 1 in all of these conditions and that all the constants
C,, C,, etc. are independent of 4. By being independent of & we mean that if we
imagine that & goes to zero then these numbers are to remain finite in the limit.

We shall use the notation, in order to save space in the sequel, m’ and /= where

m"=m-—1 and m = m — 2.



658 G. T. MCALLISTER

We shall also consider problems where we replace the expression 1 + |V, W#|* by
the expression 1 + |V|* 4+ |V,W|® in the appropriate conditions above. When we
do this we shall denote the conditions corresponding to (A), (B), etc. by (A”), (B'), etc.

Ladyzenskaya and Ural’ceva [8, p. 230] have considered the case that the in-
homogeneous term in the differential equation associated with (1) satisfies the con-
dition that |f(P, u, V)| £ C«(1 + |Vu|*)™*. Their development is relative to the
max norm, ours is not, and their analysis rests heavily on the Dirichlet Growth
Theorem of Morrey [12, p. 79] and on the extension of results of De Giorgi [12, p. 194].
We can prove some of these preliminary results but when we attempt to apply them
to a solution of (**), by a summation by parts, we cannot use these results because
on the 34,1, s Asr, o = {P: P E Oy, UP) > k, |P — Py| < p}, we do not have that
U(P) = k.

There is one more condition that we will add in order to prove the existence of a
solution to (***) over general domains.

Condition (F). For any mesh function £(P) € @4(2,) and for every mesh function
W(P) € G«(Q4), there exists a function F(P, £(P), V ,W(P)) such that

ai(P, £(P), V, W(P)) = dF(P, £(P), V,, W(P))/d W,,(P)
and
a(P, §(P), Ty W(P)) = F(P, £(P), NV, W(P))/d Ws,(P).

We remark that this Condition (F) does not say that our equation in (**)is the
Euler equation of a variational problem. Hence, our condition in (F) is more general
than a requirement of Frehse [3, p. 316] who assumes that his equations come from a
variational problem. We will also consider a sufficient condition for removing
Condition (F).

We also consider the special case that  is a rectangular region with sides parallel
to the coordinate axes. In this case, we assume that the lengths of two adjacent sides
are commensurable and that 92, C 9. We denote the sides of @by s;,i =1, --- , 4,
with s, on the side perpendicular to the x;-axis and the ordering increasing in the
counterclockwise direction. The rectangular region offers simplicities which are
not present in any other region.

In this paper, we show, under certain constraints on the constants C; of our
conditions, that a solution to (**) exists; the problem in (**) is equivalent to that
in (***), The proof of the existence of a solution is given in Theorem 1 and it makes
essential use of the Brouwer Fixed Point Theorem. To apply that theorem, we must
prove, in part, that a certain function, called ¢, defined on a ball §, in H;, (), maps
8, into itself. By requiring C? > C2Cs2™™ or C7 > Cm3™™ Cy(C»"/™ + 1)", along
with other conditions in the various parts of Theorem 1, we are able to show that a
Ji > 0 exists so that for 8, of radius = J; the mapping property is satisfied. We also
prove that this ¢ is Holder-continuous on 8, for m > 2 and ¢ is Lipschitz-continuous
on 8, for m & [4/3, 2). These continuity properties allow, under certain assumptions,
the application of constructive methods; e.g. the Banach Fixed Point Theorem or
some of the approximation methods in [16]. We also obtain certain uniqueness
results from these methods. The special case m = 2 is presented in Theorem 2.

For the proof of Theorem 1 we assumed that Condition (F) holds. In Theorem 3,
we present a sufficient condition—again based on the size of the constants C;—for
removing that condition.
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In Theorem 4, we obtain ‘“‘interior estimates” on the norm of second-order
difference quotients for solutions to (***); these estimates hold up to the boundary
if @ is a rectangular region and if the expressions a; satisfy a condition given in
Corollary 2.

In our proof of convergence, Theorem 5, we make essential use of Theorem 4
and the fact that we have two independent variables. In this respect, our proof of
convergence is different from that of [3] and [5], although a more general proof of
convergence is given in [3]. We show that for certain mesh sizes 4, tending to zero,
those associated solutions U, of (***) may be extended to U, & 3C,, o(©2) such that a
subsequence converges weakly to an element U, &€ 3}, (2) and strongly to U, over
D’ where D’ C Qand the 49, D’ are in C'. From this and the fact that 1, = U, over
D; , we conclude that U, is a weak solution to (*). This result is strengthened in the
case Q is a rectangle; that result is given in Corollary 3.

All of the results mentioned above were explicitly derived under the assumption
that Q(P) = 0 for P & 99Q,. In part (IT) of the paper, we mention how this assumption
may be removed and the resulting effects on our computations become obvious.

Our assumption that the number n of independent variables is two was only
important in Theorem 5. All results, with the exception of this, go through for n > 2
with slight modification. The proof of Theorem 5 would require a constraint on the
relationship between m and n.

The author is grateful to the referee for his careful reading of the original
manuscript.

Existence, Uniqueness and Convergence. In this section, we shall consider
uniformly elliptic difference problems of the form

(a:i(P, UP), V,UPY)s, + (ax(P, UP), V4 U(P))):,
(1) = f(P9 U(P)’ vh U(P))’ P e Qha
UP) = Q(P), P& .

A more general type of problem has been treated in [9] where @ was a rectangular
region; the geometry of Q@ was essential to the methods developed in that paper.
Here, we wish to specialize the equation to be of divergence form but to leave the
geometry of Q as broad as possible.

In the development of this section, we shall refer to Condition (A), Condition
(AY), etc., and by this we shall mean those conditions given in the Introduction which
describe the types of nonlinearity we are considering.

We now divide this section into two parts.

(I). The Case that Q(P) = 0 for P & 9Q,. Let A(2) = @ = {§(P): &P)is a
finite mesh function defined on {, and &P) = 0 for P € 99,}. Then, we define a
weak solution to (1) by following LadyzZenskaya [7, p. 91], as a solution U(P) to the
problem

It

@ #2 {Z (ai(P, U(P), V,UP)): + (P, UP), Vy U(P))}f(P) =0,

PE Qp 1=1
where U(P) € @, and (2) is to hold for all {(P) € @,. The Theorem of Gauss, see

von Koppenfels [6, p. 10] or Cryer [2, p. 160], allows us to write (2) as: (repeated
indices indicate summation over i)
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3 » pé\_?:" {a;(P, U(P), V,U(P)¢..(P) — f(P, U(P), V,UP)(P)} = 0;
here Q/ is the subset of {, described in the Introduction.
Let HL () = {V(P): V(P) € @, and there exists a constant K such that

1/m 1/m

+(h2 2 IVAV(P)I"') <K
PED

Y

@ VPl = (h” 2| V(P)I”)

PE M’
and K, may be bounded, independent of mesh size 4}. If we have two different mesh
widths s, and h,, then the domain of definition of the function V(P) € H}, (€] )is
different from the domain of definition of the function V(P) € H,, ,(9,), because
@ # Q.. We shall not dwell on this idea until we consider the question of con-
vergence. Suffice it to say at this point that we are taking % to be arbitrarily small
but fixed.

For any mesh function W(P) € @, we define the /,-norm as ||W(P)||3 =
(H Trear IWR)™V™.

In the sequel, we shall drop the prime from £, as it does not add to the exposition;
our meanings will be clear from the context.

We shall now state some lemmas of the Sobolev type which are essential for the
technical manipulations which will follow. Their proofs proceed exactly as in [10],
[11], [12, p. 801, [7, p. 82] and [14, p. 10].

Lemma 1. If V(P) € H., (), m = 1, and Q, is bounded and connected, then
B > [V(P)™ S Csh® X, |VAV(P)|™ where Cs < 2 max{d®, d"} = 2d™ with
d., the maximum width of Q, in the x,-direction.

LemMa 2. If &(P) € H,, () with 1 £ m < 2, then §P) € 1.(Q,) where
r = 2m/Q — m)and |[EP)|I0 £ @m/@2 — m)) ||V A&(P)]|2-

Lemma 3. If 4P) € H: (), m > 2, and Q is strongly Lipschitz and bounded,
then there exists a positive constant C, such that maxpeq,|&(P)| £ Co ||V 1E(P)|| 2 where
Cy £ 2v/2Cs + 3m(Q)d)/m(Q).

LEmMA 4. If {(P) is everywhere finite for P & @, and if h* 3 q, {(P)S(P) = O for
all {(P) € @, then, for all P & Q,, {(P) = 0.

An immediate consequence of Lemma 4 is that a weak solution to the discrete
problem in (3) exists iff a solution to the discrete problem in (1) exists for the same
mesh width 4. This lemma gives ‘“‘numerical meaning” to the idea of a weak discrete
solution. We introduce the weak solution idea only because we need some quantita-
tive estimates in order to prove that solutions to (3), and hence (1), exist and to
establish uniqueness and convergence criteria. This definition is made in “formal
anology”” with that used in partial differential equations.

We now turn our attention to the question of existence and uniqueness of a
solution to (3). The case m = 2 will be treated separately. We do not list explicitly
all possible cases which can occur from our assumptions but only a representative
sample to indicate the methods of proof. Some of our constraints on the constants of
the problem, as given in the next theorem, come about as we are not able to prove
all the results of the De Giorgi-Nash-Moser type; some general reasons for this were
given in the Introduction. After the proof of the following theorem, we will give
an example to which it may be applied.

THEOREM 1. We assume in all cases to be considered that Condition (F) holds.

(i) Let Conditions (A), (B), and (D) hold with m > 2. If Conditions (Ca) and (Ec)
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also hold with C, > C,Cy™2™"'™, then (3) has a solution in H®, (Q,). If Conditions
(CB) and (EB) also hold and k > 0, then (3) has a solution in H, (Q). If Condition
(Ev) also holds, then (3) has a solution in H,, ().

Gi) If m &€ (4/3, 2), if Conditions (A), (B), (D), (Ca) and (Ea) hold and if
C, > C,CY™2™""'", then'(3) has a solution in H*, (). Similar results hold for the
other cases.

(iii) Let Conditions (A’), (B"), and (D’) hold with m > 2. If Conditions (C'a) and
(E'a) also hold with C, > C3™ '/"CY™(C2'/™ + 1), then (3) has a solution in H}, (24).
Similar results hold for the other conditions.

@(v) If m € (4/3, 2), if Conditions (A'), (B"), (D’), (C'a) and (E'a) hold and if
C, > C3™/"CY™(Cr'/™ + 1), then (3) has a solution in H, (Q). Similar results
hold for the other conditions.

Proof. Case (a): 2 < m. We first assume that (Ca) and (Ea) hold with
C, > C,Cym2~m,

Let 8, = {&P): &P) € @o, h* X |VA|™ < J7} for some positive number J,
which is independent of h. Let us “formally define” the quantity ¢(4(-); P) as a
solution to the problem

) n nZ; {a,(P, £(P), Vid)Eai + f(P, £, Vi) = 0

for all { € @, and with Vg = (¢..(&(-); P), ¢.,(&(-); P)).

It follows from Condition (F) that to each &P) € 8, there exists at least one
¢(&(+); P) and it follows from Condition (B) that to each £P) &€ §, there is at most
one ¢(£(); P).

Now, we determine those conditions which allow us to conclude that ¢ : §, — §,. .
In (5) let { = ¢ and apply the conditions in (A) and (C) and Lemma 1 to get

© OF L IVsl" S K P& VDl el

S GO MU A (@) XD (V™™
Now we want the right-hand side of (6) to be < C,J*7}, i.e. we want J, so that
Q) Tz G2 m (@) /(€ — GG

Hence, with J; satisfying (7), we have that ¢ : 8, — §,.

We shall show that ¢ is a Holder-continuous function of ¢ in the topology on §,
induced by its defining norm. Let &, & € 8, with ¢,, ¢, the associated solutions to
(5). Then, if we set { = ¢; — ¢,, we get: (the summation is over P € Q)

B Y 1@P, &, Vidy) — au(P, &, Viage) + ai(P, £, Vige)— ai(P, &, Vb))
'(¢‘1 - ¢2)z.- + (f(P, 51, vhsl) - f(P» Ez, th?))(¢1 - ¢2)} = 0.

The Mean Value Theorem and our assumptions give

K Z _/; ai.p,‘(P’ £, (1 — Vi + Vi) dt- (¢, — ¢2).; (1 — ).
=K Z{

+ (Va4 [Vael? + D2C(5 — & + Vil — £)]) ¢ — 4»[}'

fo @i (P (1 = D+ ths, Vada) dt-Gy — £)- @1 — Go)a
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Now,form= 2, m=m—2,m =m— 1,

1

(¢1 - ¢2)zi(¢l - ¢2)zi j; a:.p,(P’ El’ (1 - t)vh¢1 + tvh¢2) dt

1 _—
> ¢, f (Va1 — Dbs + @) + 1172 dt |V — ¢o)°

v

C; |Vilg: — ¢)|"/m’,
where C; = C,/2if in — 2)/2 = 1 and C} = 2V"C,/2° if 0 < (m — 2)/2< 1.
Hence, for m > 2,
€3/ m" )| |V a2 — )] [m)"
S B Y G 4 (Vi) |61 = & Vi@ — ¢
+ A4+ [Vl + Vit Crlles = &l + Vit — £ 16 — 6sl}
S G X A+ Vi[O [V — Eln || Var — ¢2)lIm
+ B XA+ Vsl + (Ve e ([ Vit — &)l
NIV — ¢)l[m 4+ C"Co [V — El[n [IVa@1 — 62)||m-
Therefore, for m > 2,
(C5/ m")(||V a2 — &)||)™
< (GG @7+ m( @)™
+ CVmC,(B™ (ma( @) + 20D 4 CmCHY I VaE — £

This is the definition of a Holder-continuous function of ¢ & 8, with respect to the
norm on §,. The Holder exponent is independent of the mesh size 4 if J, has this
property.

The existence of an element U(P) € 8, satisfying the equation in (3) is now an
immediate consequence of the Brouwer Fixed Point Theorem.

Now, consider that the Conditions (CB8) and (EB) hold. The only part of the
above proof which is in need of analysis is the determination of J,. Here we have,
using Young’s Inequality,

Gt Vil £ 0 IR 5 Vil lel £ 47 20 18l + [ Vi)™
< V" IVl (ma(@) + €T (m = km/ m!)(|| V] [)"/ m
+ kmy( @)/ m' €}

where C, = C,-2" '™/ if m — wm/m’ = 1 and C} = C, otherwise, and
e > 0. Therefore, for ¢ = ™™ *™/™" we choose ¢ so that (for example),
CY™Cte™'’™ (m — km/m’) = C,/2. Then pick J, so large that

C;/mc7l(mh(9h))m'/m + {K’nh(ﬂh)/mlém'x}m’/m =G Ji"'/2.

We now proceed as in the earlier situation, since the left-hand side of the above
inequality is known.
Now consider the case that (Ev) holds. Using Lemma 3 we have that
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Gk 2 |Vl = max g BN S Gl X [V ™

and hence we choose J, so that C,C, < C,J™'.

Case (b): 4/3 = m < 2. Assume that (Ea) and (Ca) hold. We prove the con-
tinuity of ¢(£(+); P) over §,.

We obtain, using the Holder Inequality,

1
B Y @ — bl — b)) f @50/ (P, 1y (1 — Vs + Vabs) dit

v

C.h’ Z {_/; {14 lvh{(l — ¢ + f¢z}|2};/2 dt |V — ¢2)|2}

v

1 _ m/m\m/m
cz(hzz(fo {1+Ivh{(l—r)¢1+r¢z}|’}'”/“’dt) ) (V@ — é2)lln)".

Therefore,
) 1 = a m/m\ —m/m
C:(||Valdr — ¢2)|[m)" = (h2 2 (f {14 VU — 0y + 1} "} dt) )

A(Co + CHE* 3 |6 — Bl Vi — ¢2)| + Cik* 35 |Valts — £l — 5]}
Now

m/m

(j: {1+ |[V.{d — D¢ + t¢z}|2};;/2 dt) S (U4 [Vt + [Vige|)™?
and hence, using the Holder Inequality and Lemma 2,
(Vi — ¢[[2)* = 12%"W2 00 4+ my(@)} "
A(Co + COR 20 Je — &l Vi — $)| + Cih* 20 |Vl — &)1 161 — ¢}
S 29200 + m( @)}V ™M(Co + 2C)(—2m/ m)™ ™) (| Valdy — 62) [
NIV — &)l

Note that this shows that the function ¢(£(+); P) is a Lipschitz function on §,.
The remainder of the proof proceeds exactly as in Case (a), even to the use of
Lemma 2 in establishing the mapping property of ¢, i.e. for the computation of J,.
Now, we consider the mapping property when (A’), (B’), (C'®), (D) and (E'a)
hold for m > 4/3. As in (6), we have

G 2 |Vigl™ S 0 20 (P, £, Vb gl
S GG || Vigllm (B 220 (1 + 8 4 [ VE)™H™7
that is
G| Vil )™ £ CuC™3™ ™ (ma( QD)™™ + (CF7™ + DIV}
Hence, we must require that
c, > c3mmey™ey ™ + 1)

in order to establish the mapping property.
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The Holder constant now comes from the relation
(C3/m")(||Valp2 — @) [m)"
< (G 2 (U + |6l + & + Vi) C/™ + ¢/,
+ & XA Bl + e+ (VEL A+ IVl e

AIVabr — ¢)llm 1|V — E)llm-

Now, use the mapping property to complete the bound on the Hélder constant.
The case that 4/3 < m < 2 yields a Lipschitz constant computed from the relation,
assuming that the primed conditions hold,

HVA(¢I - ¢2)”3.
S (@™ 4 m( @)V mC (s + 2C)C2m/m)™ ™) ||V — E)IIS.

Remark 1. If we assume that the inhomogeneous term f(P, £, V§) satisfies a
condition of the type,

®) 2P E, V| + vi 101/08.,1} + vs [0f/0E] < Ciy

where v, v, and »; are positive constants, then our mapping property is always
established for m > 2 when we pick C,m;(2,) = C,J""? and when we set v; = 0 for
J = 1,2,3,in the above. If »; € {0, 1} and da./d¢ = 0 over §,, then the continuity
condition takes the simpler form, setting

1, v2] = max{”n 1’2} s

Vs — )lln < Cb* 2 {bn, 2] [Vt — &) + s |6 — &1} |61 — @2l

This case occurs if, for example, f = sin{¢,, + £., + £}.

We will illustrate some of the ideas of the last result in the following example.

Example. Let a(V,U) = (1 + |V, U|*/m)""*U,, for m > 2. Then, a(V,¢) =
(m/m)d(1 + |V.¢|°/m)™*?/3¢.. and hence Condition (F) is satisfied. Also, we have
that C, = m™™? = Gifm= 3,C, = C, = 1ifm&E (2,3, C: = 3/mif m € (2, 3),
Co=14+2mifmz3C=m"ifmz=3,and C; = m* ™" ifmE (2,3).
Suppose we consider the problem of finding a mesh function ¢(£(:); P) € @(Q,) such
that for every {(P) € Q,(2,) we have

B3 U+ [Vl M8 + (L4 Vgl + sin® 7%} = 0

where @, has not been specified yet. Note that C, = 2. If we can find a mesh function
¥ € @(2,) such that

I(Y) = min I(V),
veQ,
where

vy = 1 22 {0/m)(1 + [V VI m)™ + (1 + |V + sin® §™ 7 v},

then this mesh function ¢ is what we will call ¢. If we require that C} > C7C2™™,
ie. 1> 2""'™"*1 max(d?, d2)) for m € (2, 3)andl > m™22™"' """  max(d?,, d?))
for m = 3, then a constant J, exists and the set §, is meaningful. In fact, we may take
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Jpm = 2P (max(dl,, d2)" /(1 — 27 max(ds,, d2))), mE (2, 31,
= 2" (max(dl,, 2)"/(1 — w2 max(dl, d2)),  m Z 3.

Then, for V & @), £ € 8, and ¢ > 0, we have that

IV Z A/mm™ —¢/m) ||V, V|[n — @" + m2"™ D™ J1/em’)(max(dl,, d2)"™ .

Now, choose e so that 1/mm™ — ¢/m > 0 and we have that I(¥) is bounded from below
on @«(€:). Since I(V) is clearly continuous, we have that an ¢ exists. Now call
¢(&(+); P) this mesh function .
As an almost immediate consequence of Theorem 1, we have the next result.
COROLLARY 1. If4/3 = m < 2 and if

(22T 4+ m( Q)] PTG 4 2C)@m/@ — m)™TVY = Gy,
whenzver conditions (A), (B), (D), and (Ca), (Ea), or (CB), (EB), or (Ev) hold, or if
{2072 7 4+ m;.(ﬂ;.)}_;;/"'{(cs + 2C)(=2m/m)""'"} < Cy,

whenever Conditions (A’), (B'), (D), and (C'a), (E'a), or (C'B), (E’'B) hold, then
#(&(+); P) is a Lipschitz function on 8, and has one and only one fixed-point, i.e. one
and only one solution to (3) exists.

We shall now consider the case that m = 2 in establishing criteria for the con-
structive existence and uniqueness.

THEOREM 2. If conditions (A’), (B'), (C'a), (E'a) and (D’) are satisfied with m = 2,
then (3) has a unique solution in Gq(Qy) if there exists a positive constant p such that

1 — uC, + p{(Cs + CIC* + C:Cs} < 1;

in this case the solution is completely constructible. Note that this condition is satisfied
if (BEv) holds with da./dV = 0.

Proof. Let 8, = {&(P): #(P) € Qo(R), ||V rt|ln = Ji} and define the function
o(£(+); P) as the solution to the problem, for u a parameter,

B (il — EuiCas + nai(P, £, Vab)Eas + wf(P, £, Vb)) = 0.

Remark 2. We observe that in all cases considered on m, if da;/0V = 0 and f
depends on P alone, then a solution to (3) exists and it must be unique.

It is natural at this point, especially after our last result, to determine if we may
remove the very confining Condition (F). We shall state and prove a theorem on a
sufficient condition for the removal of this condition for the case m > 2. The case
m & [4/3, 2) is treated in a similar manner and the modifications necessary will be
read off from what we give.

THEOREM 3. If the hypotheses of Theorem 1(iii) hold, with the exception of Condition
(F), and if a positive constant yu exists such that uC, — 2™'m’ =z 0 and

w(Cs + C.CY™3™ ™™ 4+ C)™™ < 1,

then (3) has a solution in H}, (Q,).

Proof. We need only prove that ¢(£(-); P) exists for all £ P) & 8, as this was the
only place Condition (F) was used. Let Y(»(-); P), for »(P) € 8, and p a parameter
to be determined, be a solution to
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B+ [V Y, + pai(P, £, 0)
+ /‘di.m\bz,' -3+ IthIZ));/z‘pzi}g-z; + /-"f(P, £, vhg)g'} =0,

where

1
d; p; = f a; (P, &, tVw) dt.
0

Clearly, y(»(-); P) exists as
I(¥) = min I(V)
VES,
where
vy =n Z {a+ [V Vlz)"./z/m + wai(P, £, 0) V., + udip Vi Vg
— (L + |[VwlY™? V2 + (P, & Vi) V).

Now, we show that ¢ : §; — 8,. As in Theorem 1, we have that
(Vadlln” = w(Cs + CC™3™ ™ ™ {(ma(Q)™™ + (1 4+ C)™ ™I}
Now, pick J™' = max{4,, 4,} where
A, = p(Cs + C.CI™3™™™B + (1 — p(Cs + C.C™3™ ™™ + Co)™"™),
Ay = C,CY/™2™'™/™B + (C, — C,C™2™ ™™
and
B = (mh(ﬂh))ml/m§

note that A, comes from (7) when the primed conditions are used. Now we have
that lp : 8 — 8.

Now, observe that ||y, — »||, — 0 iff », — v, — 0 for each P € Q,. Hence ¢ is a
continuous, in H;, (2,) norm, function of »(P) & §,. By Brouwer’s Fixed Point
Theorem, at least one fixed point of y exists on §,; we call one of these ¢(£(-); P).

Now, we shall obtain “interior estimates” for powers of second-order difference
quotients, i.e. we shall show that for any subregion D of @ such that D C 2, we have
that |V,U..|, s = 1 or 2, is in /,(D,) for some p > 0 and for all 4. These estimates
will be used when we prove the convergence of the solutions of the difference equation
to a solution of the differential equation. In a remark at the end of the proof of the
next theorem, we will explain the generality of parts (d) and (¢) in the statement of
the next theorem.

THEOREM 4. (a) If U(P) is a solution to (3), if h* Y, |V,\U|" is bounded—inde-
pendent of h—over its domain of definition, if m > 2, and if conditions (B), (Ca) and
(D) hold, then there exists a positive constant J, which is independent of h such that

B3 '+ |[VLUPHY™ P2 VL0, £

where n(P) is a smooth mesh function with support over compact mesh regions of Q,
and J, is given in (10), and U,, = U,, or U,,.

(b) If U(P) is a solution of (3) with m = 2 and if the corresponding hypotheses of (2)
are satisfied, then h* Y, n* |V, U,.|> £ J; with J, given in (11).
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(c) If U(P) is a solution to (3) with m & [4/3, 2] and the appropriate hypotheses
hold as in (a), then h* 3, 4™ |7, U,.|™ £ J2/® where J, is given in (12).

(d) If m = 2 and 4 P) & 8; where, for some positive number J,, 83 = {£(P): ¢{(P) € 8,
and ||V 1|3 (m-1-y = J7 for k = 0}, if Conditions (B), (C), and (D) are satisfied, and
if (£(-); P) € H,, (Q) for each £ E 8, then there exists a positive constant J; which
depends on J, and other quantities such that

B3 7'+ Vi)™ |Vig|” S s

The number Js is estimated in (13).
() If m € [4/3, 2, if £(P) € 8, where, for some positive number J,,

8 = {E(P)3 &(P) & 8, and max[”vhfl|2(m—1—x), thsllm/(m—l)] = Jg; Kk > 0}.

if Conditions (B), (C), and (D) are satisfied, and if $(4(-); P) € HX(RQ,), then a positive
constant J,, exists such that

Y 0™ (Vi ™ S Vo

Proof. (a) Let ¢ = p,, for s = 1 or 2, and u,,(P) € @«(L:). Then, using Gauss’
Theorem, we obtain

B Y ai(P, UP), V), UP).,

_hz Z (a.'(P, U9 vh U)):n”-ﬁ
—n Z {&i.rk U,z + ;. U., + &i.:.}”zn

&)

I

where

1
a‘.bk = j; ai.vb(P) U: vhU) dt: U = (1 - t)U(P - h.) + tU(P),

da‘.u = f ai,u(P9 ﬁ: vh U(P - ha)) dt’ P — hl = (xp - h: yp)’
P — hz = (xp: Yo —™ h)’
Gies = [ @nBy UP = h), ViU — ) di, P = (1 — D = h) + tP.
0

Substitution of (9) into (3) gives

hz Z {{&i.pg le;z. + &i,u Uz. + &i.z.}#x.‘ - f(P9 U: vh U)Nz.} = 0‘
Let (P) be a nonnegative mesh function such that the closure, relative to our
neighborhood system, of its support is contained in a mesh region D, such that
D, C Q. Let w(P) = *(P)U,,(P). Using [8, p. 10] and Conditions (B), (D), (Ca),
we obtain the estimate
G 2 w*( + | VWU |V, UL, P
< # Y {(12Cs [Vanl 1 + 2°CA + VLU V4 U, || UL,
‘@’Ch+ 4|Vl (0 |ULI° Co + 1 | ULl CXA + VU™
+ €. + VAU (" |VaUs,| + 22 [Vanl- | U}

Using the Cauchy Inequality, for ¢, > 0 (i = 1, - - - , 4) and so that 12Cy¢, + Coes +
Cg€3 + C4€4 = C2 With € = C2/48C3, € = C2/4C6, €3 = C2/4C;, al‘ld €4 = Cz/4C‘,
then we obtain the bound

(10)
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3CH Y '+ VAU VAU,
< 2VK Y (20°CE/C, + (288C3 + 2C3 + 2CY) |Vanl*/C,
+ 25 [Van] (Co + CO} + V4 U™
+ max{1, 27}#* 3 2 [Vl nCI(1 + |V, UI™).

If we now choose |n(P)| and |V ,n(P)| to be bounded over {,, then we have that
7(1 + |V, U™ 2 |V, U..| € I(Q4) for s = 1, 2. Our constant J; is now estimated
by the inequality

CiJy S 44{2™(C} + (144C; + C: + C5) + Cu(Cs + CH}m() + D)
+ 2AC, max{1, 2"} Cimp(Q) + I& (mu(Q)'™,

where A = (max{max|y|, max|V,1|})°
(b) If m = 2, we have

Co||VaUn |2 £ 6C{H* 3 v'ey VAU 4+ B 2 [Van]* [VaU*/e)
+ CiE* 20 0"+ 41" 2 (Co [Vanl m [VAU* + Chn VA UD
+ 20" 3 0 [Van| (1 4 [V U
+ Gt D0 |VaU. 72 + CB® 3 0*(1 + VAU 26.
Now choose ¢ = C,/24C; and ¢, = C,/2C, to get the estimate
C.Js/2 < 184(CH/C)R* Y |Vanl? VA UI?
+ Gk 20 0" + Ci® 20 (L + [V U/
+ 46" 35 (Cs [Vanl- V2 Ul + Con | V4 U|
+ 2¢,8" 30 0 [Vanl (1 4 [VAUP).
(c) Now apply the Holder Inequality to (10) to get
C(® X (1 + [VAUPY™™0 2 ™ (ViU ™"
S (1 3 {(12GCs [Van| 4+ 1C)A + [V U™ 2™y | [n(Va U, )| o
+ & X {0 + [VLUBHY NG Y (n (VAU DY
+ Ci® X 0" 4 4CH 3 [Vl n(1 + |V U™
+ 4CiH* 30 1 [Vanl (A + VAU

Now apply the Schwartz Inequality to the first two terms on the right side of the
above to get, taking ¢, = Cy(h* 2 (1 + [V, U)™*)™"/2 and ¢, = ¢,

B X ™ [Vl ™™ £ Q/CHE X (1 + [V UPD™H ™ Cin® 3 o
+ B XA+ [V UPHYY T
(12) - {(® 22 {(12C5 [Van| + nCo)(A + [V, U™ /2pmmyim/m
+ & 2 (1 + VAU /e,
+ 4Cek® 3 |Vanl n(1 + [VLUPY™? + 4C5H 30 1 [Vanl (1 + [V, U™,

an
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(d) Now let £(P) &€ 8; and let ¢(£(-); P) be the solution to (5). We now derive
an estimate on the norm of V¢, ,(¢(+); P) which is valid for all £(P) € Ss.
In this case, we have

B Y aP,E, Vid)ee = —h Y, (@(P, & Vid))aba

= =1 2 b pbeie + G iher F iz Bas
where &, ,,, d;,; and 4, ., is defined as in (9) but now the arguments of the associated
integrands are (P, ¢, V) with g = (1 — (P — h,) + t¢(P), (P, &, V(P — h,))
with ¢ = (1 — )&P — h,) + t&(P), and (P, §P — h), V,¢(P — h,)). Then, taking
u(P) = 9°(P)¢.,, assuming m = 2 and « = 0 and settingm = m — 1 — «,

C:h X’ + [V 272 |V, |
S B Y (6Csn’e + 1°Coes/2 + 0°Cles/2)A + [Vig|)™? [V
+ G 2 A+ VDYt Vi DY
a3 + B 20 6Cs [Vanl” (1 + Vi)
+ Gl VMR L A A+ (Vi) 2
+ O X i+ (Vi 26 + 41 3 Cin( + Vg™
F 4G 2™+ (Vb)Y B [Vl [V
+ 2007 20" (ViR X [Vanl™ A [

Now choose ¢, = C;/48C;, e, = C,/16C,, €5 = C,/16C%, ¢, = C,/16C, and observe
that for p > 2 we have 1” < »® whenever 9 < 1 to get an estimate on J; from (13).

(e) If 4/3 = m < 2, then we use (13) and the Schwartz Inequality to obtain an
estimate.

Remark 3. Parts (d) and (e) of the last theorem are stated in their present
generality so that we may show the exact dependence of the norms of |V ,é.,| on the
properties of the coefficients.

In our next result we prove that if Q is a rectangular region, then our “interior
estimates” may hold for a// of Q,.

COROLLARY 2. If Q is a rectangular domain with vertices (0, 0), (a, 0), (a, b), (0, b),
if a/b is rational and h divides a and b, if a,(P, U, V,U) = 0 for P & s, + s, and
ax(P, U, V,U) = 0 for P € s, + s, if conditions (B), (C) and (D) are satisfied, and
if U(P) is a solution to (3) in H}, ((Q,) withm = 2, then there exists a positive constant
Juy such that, for s = 1 and s = 2,

B2+ [VaUPYY? VUL S T

where Jy, depends on || ,U||,, and the material constants of our conditions.
Proof. Let ¢ = U,,,, where we have reflected U as an odd function. Then, inte-
grating by parts in the x,-direction, we get the identity

n HZ {ai,il Us,ze + fUz;:Ex} = 0,
Proceeding as in the development of (9), we get

h2 QE {di.pi fozi Uixzi + di.u Ut. fo:n' + &i,f; U:E.:n + fUz.h} =0
a7
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and hence, for ¢ > 0 with i = 1, 2, we have
CH S+ |V U™ VU,
S B Y A+ VAU (Cs [VaU| + Cs} |VaUs|
+ B2 G+ VAU VAU
S (6 + &)/DH 25 (A + VAU VAU,
+ (Ci/26, + Ci/er + Cifedt® 2 (1 + |V UH™,

Now we shall prove the convergence of solutions of the difference equations to
weak solutions of the differential equation. Our proof will make essential use of our
interior estimates and the fact that our equation has two independent variables.
A different convergence proof, with less stringent hypotheses, is to be found in
Frehse [3, p. 331].

Let Q be a domain with the 2 in C*. Let D, D’ be domains with dD, D’ in C"
and such that D’ C D and D C Q. Let &, be a sequence of positive numbers tending
monotonically to zero such that 2,,,, D &,,. Let 2’ > 0 be such that for n = N(#’) we
have that D,, D D’ and @ D D,,.

Assume the appropriate—we have not yet made an assumption on m—hypotheses
of Theorem 1 are satisfied so that a solution, U,.(P) € G(£), exists to the difference
equation

h: PEZR:I. {ai(P: U»(P)s vh Un(P))g‘u(P) + j(P’ Un(P)a vh U.(P)){(P)} = 0
for all {(P) € @y(2)). Let U,(P) be the “filling-in”* function given in Stummel [15,
p- 180]; i.e.

(14) UL (P) = K, g_“, Sy (P — Q) U,Q),

where Q runs over all mesh points of the plane and
Sy(P — Q) = [sin(r(x; — £))/w(x1 — E)llsinGr(x, — £))/m(x; — £)]

with P = (x;, x;) and Q = (&, &,).

By Theorem 3, we have that U (P) &€ Hy(D,,) or we have U (P) € H3(D,)
depending on the size of m. Let us assume m = 2. Then there exists a constant inde-
pendent of A, such that ||U,.(P)||; = J; for each n = N(#’) and this norm is taken over
D,,. Hence, there exists a constant J//, independent of ,, such that ||U.(P)||; < J.’
where this norm is over D’; see Stummel [15, p. 181]. Applying the Variant of the
Calderon Extension Theorem [13, p. 74], we have new functions V.(P) € 3C; ()
such that 0,(P) = U,(P) in D’; these functions are also uniformly bounded over @
in the 3¢3 o(2) norm. Hence, a subsequence of U,, which we still call U,, converges
weakly to some Vo(P) € 3¢5 (©?). Using Theorem 3.2.3 in [12, p. 70] and Theorem
10.2 in [4, p. 28], we conclude that a subsequence of U, converges strongly to U,
in Jck, o(Q). Since 3¢k, o(2) and H,, (Q) are conditionally compact with respect to
weak convergence, the above analysis shows that if a subsequence of U,, which we
still call U, converges weakly to an element U, & 3C;, (), then for any set D' C @
satisfying the conditions above, we have that U, converges strongly to U, in 3¢ .(D’).

We now claim that, for all { € C'(D’),
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19 [[ (0P, VP, TOPNLP) + (B, OUP), ViOENEP)} i iy = 0.

To see this we first observe that U, (P) = U.(P) for P &€ Q,, and that, using the
methods of proof in [15, pp. 186-187], derivatives and difference quotients of U,(P)
converge strongly to Ue(P) in 3¢1(D’). Now, to each P € @,, with n > N(&’) let us
associate the rectangular region A,(P) determined by the vertices (x;, x;), (x; + A, x,),
(2 + kb, x; + h), (x1, X3 + h). Over Ay(P) let us define U (Q) = U,(P) and
V. U(Q) = V,U(P) for all Q € A,(P). Now we observe that there exists ¢,(n) for
i =1, 2 such that ¢(n) » 0 as n — « and

ffA..(m a:Q, Un, Vi U,)..(Q) dQ

= {£(P) + e(n)}Hra(P, U, V,U,) + O3 + e(n)).

Also, from the strong convergence derived above and the fact that U,(P) = U, (P)
for P € Q, and the appropriate conditions in (A) to (E), we deduce the result that

[[ tate. 0., ViU = a0, 1@, VU0 5@ d0 >0 a7 .
In a similar manner, we have that
[ fe. v.. viu@ do = Ei, V.. ViU + etn)
and

[ 11@. v V1) = 1@, @), VU@@ d0 -0 a5 5> o

here ¢(n) — 0 as n — « and comes from Condition (E) and § &€ C;(D’). Using the
fact that U,(P) solves the difference equation, the additivity of the integral, and the
linearity of ¢ and V¢ in the integral, we conclude that Uy(P) is a weak solution of
(1). The case m & [4/3, 2] proceeds along similar, but simpler, lines. Therefore, we
have proved the next result.

THEOREM 5. Let h, be a monotonically decreasing sequence which converges to
zero and such that Q,,, D {,.,. Let the 3Q be in C'. Let the appropriate hypotheses
of Theorem 1 and Theorem 3 be satisfied. Let U,(P) be the discrete solutions to (3)
with h = h, and let U, (P) be as in (14). Then, there exists a subsequence of U.(P)
and an element U(P) € 3C. (Q) such that U, (P) converges weakly to U (P) in
3e% o(Q), U.(P) converges strongly to Uy(P) in 5¢X(D) with dD in C* and D C Q and
the function U (P) is a weak solution to the differential equation (1); i.e. (15) holds
for every {(P) € 3¢, ().

As an immediate consequence of the last result and that in Corollary 2 we have
the following.

COROLLARY 3. Let Q be a rectangular region and let h, tend monotonically to zero
with hy > 0, Q... O Q. and 9Q,,,.,, D Q. Let U, (P) be a solution to (3) and let
U,(P) be as given in (14). Let the hypotheses of Corollary 2 be satisfied. Then there
exists an element U(P) € 3C; (Q) such that some subsequence of WU.(P) converges
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weakly in 3C; () to U(P) and a further subsequence of U.(P) converges strongly
10 U(P) in 3¢, (Q). This function U(P) satisfies (15).

Remark 4. From results in [12, pp. 78-81], [1] and [13], we may use estimates on
norms of second-order difference quotients over all of Q, to prove the pointwise
convergence of solutions of (***) to weak solutions of the differential equation.
These same techniques also work using estimates of the H}, (2,) norm of solutions
10 (3) provided m is sufficiently large relative to the number of independent variables;
see [12, p. 83].

(). The Case that Q(P) # 0 for P & Q,. We shall assume that there exists a
function g(P) € C*(2) such that Q(P) = ¢(P) for P € &, and §(P) = q(P) for
P < 3qQ.

Now we reformulate (14) slightly. We seek a mesh function U(P) & G(Qs) such
that for all {(P) & @Q«(2,) we have

(16) K Y {ai(P, U+ Q, V(U + QN5 + f(P, U+ Q, V(U + Q))¢} = 0.

[US

It is clear that all of the estimates we have obtained in (1) go through for (16) with
slight modification. These new bounds will clearly depend on discrete /,-norms of
Q(P) and its difference quotients.

We may extend our data to the case that g(P) has a continuation §(P) into Q
such that §(P) € 3¢3(Q). Our analysis in this case would follow that of our proof of
convergence.
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